구현해보기
PyTorch
Model Formulation
Architecture
class DnCNN(nn.Module):
def __init__(self,channel=1,depth=17):
super(DnCNN,self).__init__()
L=[]
L.append(nn.Conv2d(channel,64,3,padding=1,bias=False))
L.append(nn.ReLU(inplace=True))
for i in range(depth-2):
L.append(nn.Conv2d(64,64,3,padding=1,bias=False))
L.append(nn.BatchNorm2d(64))
L.append(nn.ReLU(inplace=True))
L.append(nn.Conv2d(64,channel,3,padding=1,bias=False))
self.seq = nn.Sequential(*L)
def forward(self,x):
return (self.seq(x))Parameter Initialization
Data Preparation
crop
Dataset
Result



Last updated