Introduction

Image Denoising

์ด๋ฏธ์ง€ ๋…ธ์ด์ฆˆ ์ œ๊ฑฐ๋Š” ๊ณ ์ „์ ์ธ ๋ฌธ์ œ์ด์ง€๋งŒ, ์ €๋ ˆ๋ฒจ ์ปดํ“จํ„ฐ ๋น„์ „์—์„œ ๋ฐ˜๋“œ์‹œ ํ•„์š”ํ•˜๋ฏ€๋กœ, ์•„์ง ํ™œ์„ฑํ™”๋œ ๋ฌธ์ œ. ๋…ธ์ด์ฆˆ๊ฐ€ ์žˆ๋Š” ๊ด€์ธก๊ฐ’ y\mathbf y๊ณผ ๋…ธ์ด์ฆˆ v\mathbf v ๋Œ€ํ•ด y=x+v\mathbf{y=x+v}๋กœ ๊นจ๋—ํ•œ ์ด๋ฏธ์ง€ x\mathbf{x}๋ฅผ ๋ณต๊ตฌํ•˜๋Š” ๊ฒƒ์ด ๋ชฉํ‘œ์ด๋‹ค. ๋ณดํ†ต v\mathbf v๋ฅผ ํ‘œ์ค€ํŽธ์ฐจ๊ฐ€ ฯƒ\sigma์ธ ๊ฐ€์šฐ์‹œ์•ˆ ๋…ธ์ด์ฆˆ(AWGN)์œผ๋กœ ๊ฐ€์ •ํ•œ๋‹ค. ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™์˜ ๊ด€์ ์—์„œ, ๊ฐ€๋Šฅ๋„(likelihood)๋ฅผ ์•Œ ๋•Œ image prior ๋ชจ๋ธ๋ง์€ ์ด๋ฏธ์ง€ denoising์— ์ค‘์‹ฌ์—ญํ• ์„ ํ•œ๋‹ค.

๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™์˜ ๊ธฐ๋ณธ ์‹์ธ posterior=likelihoodร—priorevidenceposterior=\frac{likelihood \times prior }{evidence}์„ ์ฐธ๊ณ ํ•˜์ž. likelihood P(yโˆฃx)\mathrm{P(y|x)} ๊ฐ€ ์ฃผ์–ด์ ธ ์žˆ๊ณ , evidence๋Š” ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋…ธ์ด์ฆˆ๊ฐ€ ์žˆ๋Š” ์ด๋ฏธ์ง€์˜ ๋ถ„ํฌ P(y)\mathrm{P(y)}๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค. ๊ทธ๋ ‡๋‹ค๋ฉด image prior(๊นจ๋—ํ•œ ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ์‚ฌ์ „์ง€์‹)์„ ๋‚˜ํƒ€๋‚ด๋Š” P(x)\mathrm{P(x)}๋ฅผ ๋ชจ๋ธ๋งํ•œ๋‹ค๋ฉด posterior์ธ P(xโˆฃy)\mathrm{P(x|y)}๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค. ์ด ํ™•๋ฅ ๋ถ„ํฌ๋Š” ๋…ธ์ด์ฆˆ๊ฐ€ ์žˆ๋Š” ์ด๋ฏธ์ง€๋ฅผ ์•Œ ๋•Œ, ๊นจ๋—ํ•œ ์ด๋ฏธ์ง€๊ฐ€ ์–ด๋–ค ๋ถ„ํฌ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š”์ง€ ์•Œ๋ ค์ค€๋‹ค.

Past Researches

NSS(nonlocal self-similarity) model, sparse model, gradient model, markov random field model์ด ๊ณผ๊ฑฐ ์ˆ˜์‹ญ๋…„๋™์•ˆ ์—ฐ๊ตฌ๋˜์–ด์™”๋‹ค. ํŠนํžˆ NSS model์€ SOTA๋กœ์„œ ๊ฐ€์žฅ ์ธ๊ธฐ์žˆ์—ˆ๋‹ค.

NSS model์€ ์ด๋ฏธ์ง€๊ฐ€ ๋น„๊ตญ์†Œ์ (nonlocal)์œผ๋กœ ์œ ์‚ฌํ•œ ํŒจํ„ด์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋Š” ์ ์„ ์ด์šฉํ•ด image prior๋ฅผ ๋ชจ๋ธ๋งํ•œ๋‹ค. ํƒ๋ฐฐ ์ƒ์ž๋ฅผ ์‚ฌ์ง„์œผ๋กœ ์ฐ์–ด๋ณด์ž. ์‚ฌ์ง„ ์† ํƒ๋ฐฐ ์ƒ์ž์˜ ๊ฒฝ๊ณ„ ์ฃผ๋ณ€์„ ์‚ดํŽด๋ณด๋ฉด, ๋น„์Šทํ•œ ํŒจํ„ด์„ ๊ฐ€์ง„ ๋ถ€๋ถ„์ด ๋งŽ์ด์กด์žฌํ•œ๋‹ค. ์ด๋ฅผ ํ‰๊ท ๋‚ด์–ด(nonlocal mean algorithm) ๋…ธ์ด์ฆˆ๋ฅผ ์ œ๊ฑฐํ•œ๋‹ค. ๋ฌด์ž‘์ • local์— ์ผ์ •ํ•œ ํ•„ํ„ฐ๋ฅผ ์ ์šฉํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค ์ด๋ฏธ์ง€๊ฐ€ ๊ฐ€์ง„ ํŠน์„ฑ์„ ์œ ์ง€ํ•˜๋ฏ€๋กœ ๋†’์€ ์„ฑ๋Šฅ์„ ๋‚ด์—ˆ๋‹ค.

๋†’์€ ์„ฑ๋Šฅ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , image prior์„ ๊ตฌํ•˜๋Š” ๋ฐฉ๋ฒ• ๋‘ ๊ฐ€์ง€ ํฐ ๋‹จ์ ์ด ์žˆ๋‹ค. ์ฒซ์งธ, test ๊ณผ์ •์ด ๋งค์šฐ ๋ณต์žกํ•œ ์ตœ์ ํ™” ๋ฌธ์ œ์ด๋ฏ€๋กœ ๊ณ„์‚ฐํ•˜๋Š” ๋ฐ ์‹œ๊ฐ„์ด ์˜ค๋ž˜ ๊ฑธ๋ ธ๋‹ค. ์ปดํ“จํŒ… ํšจ์œจ์ด ์ข‹์ง€ ์•Š์•˜๋‹ค. ๋‘˜์งธ, non-convex์ด๋ฏ€๋กœ ์ตœ์ ํ™”๊ฐ€ ํž˜๋“ค๋ฉฐ, ์ˆ˜๋™์œผ๋กœ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์กฐ์ •ํ•ด์•ผ ํ•œ๋‹ค.

์ด๋Ÿฌํ•œ prior ๊ธฐ๋ฐ˜ ์ ‘๊ทผ์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด image prior์„ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•œ discriminative ๋ฐฉ๋ฒ•์ด ๋ช‡ ๊ฐ€์ง€ ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ (์šฐ๋ฆฌ๊ฐ€ ์•Œ๊ณ  ์žˆ๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์ฒ˜๋Ÿผ) test ๊ณผ์ •์—์„œ ๋ฐ˜๋ณต์ ์ธ ์ž‘์—…์ด ์—†๋‹ค. ์ด์™€ ๊ด€๋ จํ•ด CSF method(quadratic optimization ์‚ฌ์šฉ), TNRD method(ํ›„์— ๋น„๊ตํ•  ๊ฒƒ) ๋“ฑ์ด ๋“ฑ์žฅํ–ˆ๋‹ค.

Differences

์ด ๋…ผ๋ฌธ์—์„œ, ๋ช…์‹œ์ ์ธ(์ˆ˜ํ•™์ ์œผ๋กœ ๋‚˜ํƒ€๋‚ด์–ด์ง€๋Š”) image prior์„ discriminative model์— ํ•™์Šต์‹œํ‚ค๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ์ด๋ฏธ์ง€ denoising์„ ๋‹จ์ˆœํ•œ discriminative ํ•™์Šต ๋ฌธ์ œ๋กœ ๋‹ค๋ฃฌ๋‹ค. ์ฆ‰, CNN์œผ๋กœ ๋…ธ์ด์ฆˆ๊ฐ€ ์„ž์ธ ์ด๋ฏธ์ง€์—์„œ ๋…ธ์ด์ฆˆ๋งŒ ๋ถ„๋ฆฌํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

์—ฌ๊ธฐ์„œ ์ œ์•ˆํ•˜๋Š” DnCNN์€ ์ถ”์ •ํ•œ ๋…ธ์ด์ฆˆ ์—†๋Š” ์ด๋ฏธ์ง€์ธ x^\mathbf{\hat{x}}๋ฅผ ์ง์ ‘ ์ถœ๋ ฅํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹Œ, ์ถ”์ •ํ•œ ๋…ธ์ด์ฆˆ ์ž์ฒด์ธ v^\mathbf{\hat{v}}๋ฅผ ์ถœ๋ ฅํ•œ๋‹ค. Residual(์ž”์—ฌ) image๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค. CNN์˜ hidden layer์—์„œ ๊นจ๋—ํ•œ ์ด๋ฏธ์ง€๋ฅผ ์ง€์›Œ๋ฒ„๋ฆฌ๋Š” ๊ฒƒ์ด๋‹ค.

Additional Uses

v\mathbf{v}๋ฅผ bicubic์œผ๋กœ upscaleํ•œ ์ด๋ฏธ์ง€์™€ ์›๋ณธ ์ด๋ฏธ์ง€์˜ ์ฐจ์ด๋ผ๊ณ  ํ•œ๋‹ค๋ฉด, ์ด๋Š” Super Resolution ๋ฌธ์ œ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. JPEG๋กœ ์••์ถ•ํ•œ ์ด๋ฏธ์ง€์™€ ์›๋ณธ ์ด๋ฏธ์ง€์˜ ์ฐจ์ด๋ผ๊ณ  ํ•œ๋‹ค๋ฉด, JPEG Deblocking ๋ฌธ์ œ๋กœ๋„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. JPEG๋Š” ์–ด๋–ค ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ์›๋ณธ ์ด๋ฏธ์ง€๋ฅผ ์••์ถ•ํ•œ ๊ฒƒ์ด๊ณ , ์–ด๋–ค ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜๋Š๋ƒ์— ๋”ฐ๋ผ ์ผ๋ฐ˜์ ์ธ denoising ๋ฌธ์ œ๋ผ๊ณ  ๋ณผ ์ˆ˜ ์žˆ๋‹ค

์—ฌ๊ธฐ์„œ ๋‚˜ํƒ€๋‚ด๋Š” ์ผ๋ฐ˜์ ์ธ denoising ๋ฌธ์ œ๋Š” ์ฃผ์–ด์ง„ ์—ฐ์‚ฐ์ž HH์— ๋Œ€ํ•ด y=Hx+v\mathbf{y}=H\mathbf{ x+v} ๋กœ ๋‚˜ํƒ€๋‚ด์–ด์ง„๋‹ค. HH๊ฐ€ ํ•ญ๋“ฑ ์—ฐ์‚ฐ์ž๋ผ๋ฉด ๋‹จ์ˆœํ•œ denoising ๋ฌธ์ œ์ด๋ฉฐ, JPEG ์••์ถ• ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋„ฃ์œผ๋ฉด JPEG Deblocking, resize/average ํ–‰๋ ฌ์„ ๋„ฃ๋Š”๋‹ค๋ฉด Super Resolution ๋ฌธ์ œ๊ฐ€ ๋œ๋‹ค.

์ •๋ฆฌ

๋ณธ ๋…ผ๋ฌธ์—์„œ ์„ ๋ณด์ด๋Š” ๊ฒƒ์€

  1. end-to-end๋กœ ํ•™์Šต ๊ฐ€๋Šฅํ•œ denoising CNN์„ ์ œ์•ˆ. ๋‹จ, ๋…ธ์ด์ฆˆ๋ฅผ ์ œ๊ฑฐํ•˜์ง€ ์•Š๊ณ  ์ด๋ฏธ์ง€๋ฅผ ์ œ๊ฑฐํ•จ.

  2. Residual learning, Batch normalization์ด CNN์˜ ํ•™์Šต ์†๋„์™€ ์„ฑ๋Šฅ์„ ๋†’์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•จ.

  3. DnCNN์€ denoising ๋ฌธ์ œ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋‹ค์–‘ํ•œ ์ž‘์—…์— ์ ์šฉ ๊ฐ€๋Šฅํ•จ. ํŠนํžˆ, denoising/SR/JPEG deblocking์„ ํ•ด๊ฒฐํ•จ.

Last updated

Was this helpful?